Neutron-Antineutron Oscillation Search with Free Neutrons

W. M. Snow Indiana University/CEEM Project X Workshop

Why use free neutrons?

Experimental requirements

Improved experiment with slow neutrons

Neutron-Antineutron Oscillations: Formalism

$$\Psi = \begin{pmatrix} n \\ \overline{n} \end{pmatrix}$$
 n-nbar state vector

 $\alpha \neq 0$ allows oscillations

$$H = \begin{pmatrix} E_n & \alpha \\ \alpha & E_{\bar{n}} \end{pmatrix}$$
 Hamiltonian of n-nbar system

$$E_n = m_n + \frac{p^2}{2m_n} + U_n$$
; $E_{\bar{n}} = m_{\bar{n}} + \frac{p^2}{2m_{\bar{n}}} + U_{\bar{n}}$

Note:

- α real (assuming T)
- $m_n = m_{\overline{n}}$ (assuming CPT)
- $U_n \neq U_{\overline{n}}$ in matter and in external B $[\mu(\overline{n}) = -\mu(n)]$ from CPT

Neutron-Antineutron transition probability

For
$$H = \begin{pmatrix} E + V & \alpha \\ \alpha & E - V \end{pmatrix}$$

$$P_{n \to \overline{n}}(t) = \frac{\alpha^2}{\alpha^2 + V^2} \times \sin^2 \left[\frac{\sqrt{\alpha^2 + V^2}}{\hbar} t \right]$$

where V is the potential difference for neutron and anti-neutron.

Present limit (from SuperK data+Gal theory) on $\alpha \le 2 \times 10^{-24} eV$

Contributions to V:

- <Vmatter>~100 neV, proportional to density
- <Vmag>=μB, ~60 neV/Tesla; B~10nT-> Vmag~10⁻¹⁵ eV
- <Vmatter> , <Vmag> both $>> \alpha$

For
$$\left[\frac{\sqrt{\alpha^2 + V^2}}{\hbar}t\right] <<1$$
 ("quasifree condition") $P_{n \to \bar{n}} = \left(\frac{\alpha}{\hbar} \times t\right)^2 = \left(\frac{t}{\tau_{n\bar{n}}}\right)^2$

Figure of merit=
$$NT^2$$
 N=#neutrons, T="quasifree" observation time

Neutron Oscillations in Nuclei

N-nbar transitions in nuclei in underground detectors: better limits now, but

- (1) Backgrounds: very hard to claim a discovery
- (2) Backgrounds: hard to improve limit further
- (3) Some nuclear model dependence in conversion to free oscillation limit

Free Neutron Oscillations

- (1) Backgrounds can be very low: antineutron annihilation vertex restricted to very small volume
- (2) Experimental control over quasifree condition: oscillation can be turned off with very small change in magnetic field
- (3) Sensitivity can be improved significantly using existing technology

"Slow" Neutrons: MeV to neV

~MeV neutrons from fission or spallation, thermalized in ~ 20 collisions in ~ 100 μs

Т	E	λ	V
(K)	(meV)	(A)	(m/sec)
300	25	1.6	2200
20	2	6.4	550

N-Nbar search at ILL (Heidelberg-ILL-Padova-Pavia)

Baldo-Ceolin M. et al., Z. Phys. C63,409 (1994).

Quasifree Condition: B Shielding and Vacuum

µBt<https://www.ncbe.nlm.nih.gov/html ILL achieved |B|<10 nT over 1m diameter, 80 m beam, one layer 1mm shield in SS vacuum tank, 1% reduction in oscillation efficiency (Bitter et al, NIM A309, 521 (1991). For new experiment need |B|<~1 nT

If nnbar candidate signal seen, easy to "turn it off" by increasing B

V_{opt}t<<**ħ**:

Need vacuum to eliminate neutron-antineutron optical potential difference.

P<10⁻⁵ Pa is good enough, much less stringent than LIGO

Fig. 10. The transverse field compensation system. Loops 1 and 2 are under 49 A current and compensate the horizontal field component; loops 3 and 4 are under 120 A current and compensate the vertical field component.

The conceptual scheme of antineutron detector

$$\overline{n} + A \rightarrow \langle 5 \rangle \ pions \quad (1.8 \text{ GeV})$$

Annihilation target: ~100µ thick Carbon film

$$\sigma_{annihilation} \sim 4 \text{ Kb}$$
 $\sigma_{nC \text{ capture}} \sim 4 \text{ mb}$

Vertex location of annihilation is precisely defined ILL experiment saw no background

Better Slow Neutron Experiment: What do we want? (HOW DIFFICULT IS IT?)

While still keeping quasifree condition, one wants more $\,NT^{\,2}$ with nbar detector watching the annihilation surface

- higher cold neutrons flux from source DIFFICULT
- slower cold neutron energy spectrum DIFFICULT
- more efficient extraction of cold neutrons with optics to quasifree flight/detector GREAT PROGRESS
- longer "quasifree" flight time (YES, SOME GAIN)
- longer experiment operation time YES (ILL only ran 1 year)

For cold neutrons: Improvement on ILL experiment by factor of ~1000 in transition probability is possible with existing n optics technology, sources, and moderators

Max neutron flux/brightness: ~unchanged for ~4 decades

Neutron flux is increasing only slowly with time R. Eichler, PSI

Why is it hard to make colder neutron spectra from cold sources?

- 1. Cryogenic engineering (heat loads, conductivity/heat capacity...)
- 2. For cold neutrons with λ >d, σ_{el} >> σ_{in} , most collisions elastic
- 3. Frozen materials required to lower neutron T also freeze inelastic modes
- 4. Radiation damage causes cryogenic solids to decompose or explode
- 5. Phonon phase space decreases as ω^3 , need to find other inelastic modes

Research on better slow neutron moderators in progress

"Ultracold Neutrons" special case

Better Cold Neutron Experiment (Horizontal beam example)

 need cold neutrons from high flux source, access of neutron focusing reflector to cold source, free flight path of ~200m

Image of n source is blurred by finite source and neutron velocity dispersion -> limits practical length of a horizontal experiment

concept of neutron supermirrors: Swiss Neutronics

"Supermirrors": $\theta_{critical} \rightarrow m\theta_{critical}$

Commercial Supermirror Neutron Mirrors are Available With $m \approx 3$ - 4. Phase space acceptance for straight guide ∞m^2 , more with focusing reflector

"Items of commerce"

Neutron mirror technology (for the most part) still involves static mirrors -> no compression of phase space density (Liouville) But supermirrors with higher m exist (M. Shimizu talk)

"Slow neutron adaptive optics" does not yet exist (see P.Boni, NIM A586, 1 [2008] for future hopes)

New Experiment at Existing Research Reactor?

- need close access to cold source to fully illuminate elliptical reflector. Not easy to create in an existing user facility
 - Requests to all >20
 MW research reactors with cold neutron sources: no takers.
 - Only possibility is for a "green-field" neutron source

Cutaway view HFIR reactor at ORNL

Sources of ~x1000 Improvement on ILL Experiment with Cold Neutrons

-increased phase space acceptance of neutrons from source (using m≥3 supermirrors): x~60->?

```
-larger moderator:
x~10 years (ILL 1 year)

-increase neutron free-flight time (t²):
x~4-10 (horizontal, limited by gravitational defocusing)

-source brightness:
x~1/4 (horizontal, FNAL)

-cold moderator gain:
```

x~2

NNbar Summary

New physics beyond the SM can be discovered by NNbar search

Improvement in free neutron oscillation probability of a factor of ~1,000 is possible

If discovered:

• n→nbar observation would violate B-L by 2 units, establish a new force of nature, illuminate beyond SM physics, and may help to understand matterantimatter asymmetry of universe

If NOT discovered:

• will set a new limit on the stability of "normal" matter via antimatter transformation channel. Will constrain some scenarios for B-L violation and "post-sphaeleron" baryogenesis

Summary

New physics beyond the Standard Model can be discovered by NNbar search

Experiments with free neutrons possess very low backgrounds (sharp vertex localization): ILL experiment observed no background. Interpretation of result is independent of nuclear models. Any positive observation can be turned off experimentally with the application of a small magnetic field.

Sensitivity of free neutron experiment for NNbar transition rate can be improved by factor of ~1000 using existing technology [Combination of improvements in neutron optics technology, longer observation time, and larger-scale experiment]. Further improvements in a free neutron experiment can comes from neutron optics technology development.

US high-energy intensity frontier complex could in principle provide the type of dedicated source of slow neutrons needed for NNbar experiment.